skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Vivian Xiaojing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract LiNO3is a widely used salt‐additive that markedly improves the stability of ether‐based electrolytes at a Li metal anode but is generally regarded as incompatible with alkyl carbonates. Here we find that contrary to common wisdom, cyclic carbonate solvents such as ethylene carbonate can dissolve up to 0.7 M LiNO3without any additives, largely improving the anode reversibility. We demonstrate the significance of our findings by upgrading various state‐of‐the‐art carbonate electrolytes with LiNO3, which provides large improvements in batteries composed of thin lithium (50 μm) anode and high voltage cathodes. Capacity retentions of 90.5 % after 600 cycles and 92.5 % after 200 cycles are reported for LiNi0.6Mn0.2Co0.2O2(2 mAh cm−2, 0.5 C) and LiNi0.8Mn0.1Co0.1O2cathode (4 mAh cm−2, 0.2 C), respectively. 1 Ah pouch cells (≈300 Wh kg−1) retain more than 87.9 % after 100 cycles at 0.5 C. This work illustrates that reforming traditional carbonate electrolytes provides a scalable, cost‐effective approach towards practical LMBs. 
    more » « less